Erciyes University, Faculty of Engineering

Department of Electrical and Electronics Engineering

Course Contents

5. Semester

Term	Autumn					
Code	Course Title	Т	Ρ	К	ECTS-Cr	
EEM 305	Electronic Circuits II	3	0	4	4	
Course Description:						

The purpose of this course is to provide the student with a clear presentation application of the principles of engineering electronics and to develop students' ability to analyze problems based on the understanding of its basic concepts, such as examination of the electrical characteristics of operational amplifiers. Inverting and noninverting op-amp circuits. Applications on voltage followers. Addition and subtraction circuits. Sinusoidal oscillators. Comparators. Logarithmic and antilogaritmic op-amp based circuits. Op-amp based low-pass, high-pass and band-pass filters. Applications about IC 555. Phase locked loops (PLL).

Term	Autumn					
Code	Course Title	Т	Ρ	К	ECTS-Cr	
EM 309	Electrical Machines	3	0	4	4	
Course Description	on:					
Magnetic circuits	and systems. Fundamentals of transformers, impedance transfer, s	single	-phas	e tra	nsformers, three-	
phase transform	ers, auto-transformers, equivalent circuits of transformers. Powe	r fac	tor a	nd vo	ltage regulation.	
Electromechanica	I energy conversion, co-energy, field energy, rotating machines. C	ylindı	rical r	nachi	nes, principles of	
dc machines, equivalent circuits of DC machines, DC generators, DC motors. Speed control methods and applications						
of DC motors. Introduction to AC machines.						

Term	Autumn					
Code	Course Title	Т	Ρ	к	ECTS-Cr	
EEM 313	Electronic Circuits Laboratory II	0	2	2	2	
Ocume Description:						

Course Description:

The purpose of this course is to provide the student with a clear presentation application of the principles of engineering electronics and to develop students' ability to analyze problems based on the understanding of its basic concepts, such as examination of the electrical characteristics of operational amplifiers. Inverting and noninverting op-amp circuits. Applications on voltage followers. Addition and subtraction circuits. Sinusoidal oscillators. Comparators, logarithmic and antilogaritmic op-amp based circuits. Op-amp based low-pass, high-pass and band-pass filters. Applications about IC 555. Phase locked loops (PLL).

Term	Autumn					
Code	Course Title	Т	Р	К	ECTS-Cr	
EM 315	Microprocessors	2	0	2	2	
Course Description:						

Structural Properties of Microprocessors. Basic CPU Signals, Development of the Microprocessors. PC Data Buses, CPU Design Architectures. Memory Unit and Memory Organization. Arithmetic Logic Unit, General Properties of Registers and Counters. Control Unit, Input-Output (I/O) Units. 8085 CPU Family, Machine Cycle and Timing Diagrams. Structures of the 8085 CPU Instructions and Their Classifications. Basic Instructions and Programming. Data Transfer, Programming with Arithmetic and Logic Instructions. Loops, Counter and Delay Operations. Stack Operations, Subroutines, Code Conversion, BCD Arithmetic. Overview of the Microcontrollers

Term	Autumn						
Code	Course Title	Т	Ρ	к	ECTS-Cr		
EM 317	Electromagnetic Field Theory II	3	0	4	4		
Course Description:							
Sources of elect	romagnetic fields and fundamental postulates of electrostatics	in fr	ee sp	bace.	Coulomb's Law.		
Electrostatic field	s of discrete and distributed charges. Gauss' Law and electric potent	tial. C	ondu	ctors	and dielectrics in		
electrostatic fields. Electric flux density and dielectric constant. Boundary conditions. Capacitance and capacitors.							
Electrostatic energy and forces. Poisson's and Laplace's Equations, method of image charges. Solution of electrostatic							
problems: Poisson's and Laplace's Equations, method of image charges. Steady electric currents: Point forms of							

Ohm's, Kirchhoff's and Joule's Laws. Fundemental Postulates of Magnetostatics in Free Space. Amper's circuital Law and Applications. Wector magnetic Potantional. The Biot-Sawart Law and Applications. Magnetization and Equivalent Current Densities and Magnetic Field intensity and Relative Permiability. Behavior of Magnetic Materials and Boundary Conditions for Magnetostatic. Magnetic Energy. Time variying fields and Maxwell's equations introduction.

Term	Autumn					
Code	Course Title	Т	Ρ	К	ECTS-Cr	
EM 318	Signals and Systems	3	0	4	4	
Course Description	on:					
Continuous and Discrete-time Signals and systems. Discrete-time linear time-invariant systems. The Z transforms and applications. Discrete Fourier transforms. Fast Fourier transforms.						

Term	Autumn						
Code	Course Title	Т	Р	К	ECTS-Cr		
EM 356	Science, Technology and Engineering	2	0	2	2		
Course Description	on:						
What is science?	? What is technology? A short history of science. Science and	com	muni	ty. Tl	ne contents and		
limitations of scientific method. Science, research and development. Explanation of engineer term. Historical							
background of engineering and technology. The evaluation of engineering education and 21 st century engineering							
education. Techn	ology and market relations.						

6. Semester

Term	Spring				
Code	Course Title	т	Ρ	К	ECTS-Cr
EM 306	Fundamentals of Communication Engineering	3	0	5	5
Course Description	on:				
Line spectrum ar	d Fourier series. Fourier transform. Central limit theorem and con	nvolu	tion.	Spect	tral analysis. Fast
fourier transform (FFT). Correlation functions. Power spectral density. Linear circuits and applications. Transmission					
distortion Hilbert transform					

Term	Spring						
Code	Course Title	Т	Ρ	К	ECTS-Cr		
EM 320	Logic Laboratory	0	2	2	2		
Course Description	on:						
Basic logic gate s	tructures. Combinational logic circuits, adders, and Demultiplexer m	nultip	lexer,	deco	oder and encoder		
circuits and applications. Flip Flops, Counters, registers, memory elements and applications. Digital-analog and							
analog-digital converter circuits and applications. Arithmetic-Logic Unit design (ALU), and application.							

Term	Spring					
Code	Course Title	Т	Ρ	К	ECTS-Cr	
EM 342	Electromagnetic Weves Theory	3	0	5	5	
Course Description	on:					
Maxwell equatio	ns and Electromagnetic Boundary Condintions. Potential Function	s. Th	e use	e of F	hasors and time	
harmonic Electro	magnetics. Plane Electromagnetic waves in lossless media and tra	ansve	rse E	lectro	magnetic waves.	
Polarization of p	ane waves. Plane waves in lossy media, Low-loss dielectrics media	a, and	d goo	d cor	nductors. Flow of	
Electromagnetic Power and The poynting vector and instantenous and avarage power densities. Normnal incidence of						
plane waves at plane boundaries. Oblique Incidence of plane waves at plane boundaries.						

Term	Spring						
Code	Course Title	Т	Р	К	ECTS-Cr		
EM 302	Automatic Control	3	0	5	5		
Course Description:							
Introduction to automatic control. Mathematical modeling of physical systems. Transfer function, block diagram, and							

Introduction to automatic control. Mathematical modeling of physical systems. Transfer function, block diagram, and signal flow graph. State-variable analysis. Characteristics of closed-loop systems. Performance of control systems. Stability of linear control systems. Frequency-domain analysis of control systems. Root locus technique.

Term	Spring						
Code	Course Title	Т	Р	К	ECTS-Cr		
EM 308	Communication Electronics	2	0	3	3		
Course Description	on:						
Serial and parall	el RLC circuits. Coupled systems. Noise and types. Gürültü facto	r. No	ise te	empe	rature. Tuned RF		
amplifiers. Frequency conversion and mixers. IF amplifiers, oscillators.frequency synthesizers. Superheterodyne							
receivers. Amplitude modulated transmitters and receivers. Angle modulated transmitters and receivers.							

Term		Spring										
Code		Course Title						Т	Ρ	К	ECTS-Cr	
EM 310 Radyo-TV Technique						2	0	3	3			
Course	Course Description:											
Color television technology: Television standards and forms. Radio rea					recei	vers	5. Dre	am	frequency	and		
elimina	elimination. Abreast of the recipient. Stereo radio receivers: encoding, decoding											

Term	Spring							
Code	Course Title	Т	Ρ	К	ECTS-Cr			
EM 314	Nonlinear Circuits and Systems	2	0	3	3			
Course Description:								
Introduction to	nonlinear systems. Linear and nonlinear circuit elements. Nor	linear	oscill	ators	. Op-amp based			
nonlinear circuits	. Nonlinear resistor concept.							

Term	Spring					
Code	Course Title	Т	Ρ	К	ECTS-Cr	
EM 316	Digital Electronics	2	0	3	3	
Course Description:						
Digital circuits. Transistor logic. Diode - transistor logic. Transistor - transistor logic. Emitter - coupled logic. Metal-						
oxide semiconductor gates. Analog switches. Multivibrators.						

Term	Spring						
Code	Course Title	Т	Ρ	К	ECTS-Cr		
EM 322	Industrial Electronics	2	0	3	3		
Course Description:							
Electromechanica	Electromechanical circuit elements and analysis of electromechanical control circuits. DC and AC motor movement,						
speed and direction electrical motors. Programmable control circuit and systems (NC, PLD, PLC, CNC and DNC)							
analysis.							

Term	Spring					
Code	Course Title	Т	Р	к	ECTS-Cr	
EM 326	Introduction to Programmable Logic Devices	2	0	3	3	
Course Description:						
Programmable logic devices (SPLD, CPLD, FPGAs). Introduction to VHDL. Behavioral modeling. Data flow modeling.						
Structural modeling. Generics and configurations. Subprograms and packages. Basics. Mapping Statement to Gates.						
Model Optimization. Verification.						

Term	Spring					
Code	Course Title	Т	Ρ	К	ECTS-Cr	
EM 330	Design Principles of Electrical Machines	2	0	3	3	
Course Description	on:					
Basic principles of ac machines and rotating magnetic field. Fundamentals and equivalent circuit of induction						
machines, single and poly-phase induction machines. Operation modes of induction machines. Speed control						
techniques of induction motors. Linear induction motor. Fundamentals and equivalent circuit of synchronous. Special						
electrical machines.						

Term	Spring						
Code	Course Title	Т	Р	к	ECTS-Cr		
EM 344	Microcontrollers	2	0	3	3		
Course Description:							
Review of logic circuits. Algorithm development and flow charts. The PIC16FXX Microcontroller family. Program and							
data memory. Special function registers. I/O Port connections. Timer Module. Design examples. EEPROM data							
memory. CCP module. USART module. Design examples. Communication with popular peripheral elements. A high							

level design example.

Term	Spring						
Code	Course Title	Т	Ρ	к	ECTS-Cr		
EM 350	Data Communications	2	0	3	3		
Course Description:							

Basic concepts, Introduction to data communication. Model used in data communication system. Transmission media used in data communication. Parallel and serial communication. Serial and asynchronous communication, RS232C, long distance RS422, RS485, synchronous communication. Error dedection and error correction. Error correction codes. Data encoding. Network topologies and switching techniques. Data communication protocols. OSI, TCP/IP. Data layer, Network layer. Frame structures, modems, ADSL, data network standards and architectures. Elements in the quality of data communication.